

A Resource Management Mechanism and Its Implementation for Virtual Machines

Zhigang Wang, **Chuliang Weng**, Yu Wang, and Minglu Li Shanghai Jiao Tong University, China http://grid.sjtu.edu.cn/clweng Munich, October 22nd, 2008

Introduction

- VE-manager Architecture
- Implementation Details
- Current and future work
- Conclusions

System management issue for the virtualized cluster

- Existed virtualization tools:Vmware, Xen, KVM,.....
- Multiple VMMs may be used in a cluster environment .
- How to manage the system with heterogeneous VMMs?

- Introduction
- VE-manager Architecture
- Implementation Details
- Current and future work
- Conclusions

VE-manager Architecture

- VMMs (Xen, QEMU, KVM etc.)
- Middleware
- Agents (VMM-agent & VM-agent)
- GUI frontend

A Scenario

- A cluster with one management node and multiple computing nodes.
- VMM-agent for the physical node, while VMagent for an individual VM.

More detail of VE-manager arch.

- A centralized management in the cluster
- A hierarchy architecture in each virtualized node
 - □ The implementation of each level is independent.

- Introduction
- VE-manager Architecture
- Implementation Details
- Current and future work
- Conclusions

VMM-agent

VMM-agent

- Providing services to GUI-frontend
- Collecting metrics for load balancing
- Carrying out services through Middleware and VMagent
- XML-RPC as the communication method

VMM-agent (cont.)

Using XML-RPC to communicate:

- □ Agent as a server and GUI Frontend as the client
- □ Lightweight (And it is easy to use in C/C++ and python)

Middleware

- Hiding the difference of management interface of the different VMMs and providing the stable API
- At present, based on the libvirt, which:
 - Supporting different VMMs such as Xen, KVM, QEMU etc.
 - Stable C and python binding API
 - A CIM provider for the DMTF virtualization schema

GUI-frontend

User interface

- Shows the details of the virtualized cluster
- □ Helps to manage the system: create, destroy VMs,...
- Implemented in python
- The UI is constructed with pyGTK/glade

Advance:

 The GUI-frontend can work well on both Linux and Windows without making any changes

System Management

- VM management within a node
 - Create, destroy, boot, pause or resume, snapshot or restore VM.
 - □ Set the vCPU and memory
 - Monitor the running states of the VMs
 - Manage storages and virtual network

System Management (cont.)

- System management within a VM
 - User and user privilege
 - Processes and Services etc.
 - An assistant agent (VM-agent for short) is placed in the VM
 - GUI-frontend carries out all the management task through the VMM-agent with the help of VM-agent

Others

Security

- □ HTTPS
- SSH tunnel

VDI

VNC and console

- Introduction
- VE-manager Architecture
- Implementation Details
- Current and future work
- Conclusions

Current work

Screenshot of the GUI-frontend

A vista VM

Migration

Migration(cont.)

Ongoing work

- Dynamic load balancing
 - Two-Level scheduling
 - □ Level-1 scheduling:
 - Between VMs in the same physical node.
 - Level-2 scheduling
 - Between the physics nodes in the cluster.

Ongoing work(cont.)

• We place level-1 scheduler in VMM-agent, and level-2 scheduler in GUI-frontend

- Introduction
- VE-manager Architecture
- Implementation Details
- Current and future work
- Conclusions

Conclusions

- The goal of VE-manager is to manage all nodes and VMs running on nodes effectively and friendly in a cluster environment.
- Our GUI-Frontend is designed as a thin client, it can run on different platforms without modifying the code.
- We can use the different middleware by modifying the VMM-agent.
- It's meaningful to consider load balancing for the virtualized cluster management.

Thanks!